11.3.2 Moment-Generating Function

Moment generatin

This last expression is the product of the moment generating-functions for M scaled Poisson processes, the *m*th process having intensity $\lambda p(y_m)$ and jump size y_m .

• If Y_i takes one of finitely many possible nonzero values $y_1, y_2, ..., y_m$, with $p(y_m) = P(Y_i = y_m)$ so that $p(y_m) > 0$ for every m and $\varphi_Y(u) = 0$

 $\sum_{m=1}^{M} P(y_m) e^{iiy_m}$. It follows from (11.3.2)

$$\mathcal{L}_{m=1}^{m=1} \mathcal{L}_{m}^{m} \mathcal{L}_{m}^{$$

Theorem 11.3.3 (Decomposition of a compound Poisson process).

Let y_1, y_2, \ldots, y_M be a finite set of nonzero numbers, and let $p(y_1), p(y_2), \ldots, p(y_M)$ be positive numbers that sum to 1. Let $\lambda > 0$ be given, and let $\overline{N}_1(t), \overline{N}_2(t), \ldots, \overline{N}_M(t)$ be independent Poisson processes, each $\overline{N}_m(t)$ having intensity $\lambda p(y_m)$. Define $\overline{N}_m(t)$: $\mathfrak{R}_m(t)$: $\mathfrak{R}_m(t)$: $\mathfrak{R}_m(t)$:

 $\overline{Q}(t) = \sum_{m=0}^{M} y_m \overline{N}_m(t), \quad t \geq 0.$ (11.3.6) $\overline{Q}(t)$: jump size 乘次數的總合

 $\bar{Q}(t)$ is a compound Poisson process.

- If $\overline{Y_1}$ is the size of the first jump of \overline{Q} (t), $\overline{Y_2}$ is the size of the second jump, etc., and $\overline{N}(t) = \sum_{m=1}^{M} \overline{N}_m(t)$, $t \ge 0$, is the total number of jumps on the interval (0, t].
- \overline{N} (t) is a Poisson process with intensity λ , the random variables $\overline{Y_1}, \overline{Y_2}, \ldots$ are independent with $P\{\overline{Y_i} = y_m\} = p(y_m)$ for $m = 1, \ldots, M$, the random variables $\overline{Y_1}, \overline{Y_2}, \ldots, \overline{Y_M}$ are independent of \overline{N} (t), and

$$\overline{Q}(t) = \sum_{i=0}^{\overline{N}(t)} \overline{Y}_i, \quad t \ge 0.$$

Outline of Proof: According to (11.3.3), for each m, the characteristic function of $y_m \overline{N}_m(t)$ is $\varphi_{yN(t)}(u) = \mathbb{E}e^{uyN(t)} = \exp\{\lambda t(e^{uy} - 1)\}.$ (11.3.3)

$$\varphi_{y_m \overline{N}_m(t)}(u) = \exp\{\lambda p(y_m)t(e^{uy_m} - 1)\}.$$

With $\overline{Q}(t)$ defined by (11.3.6), we use the fact that $\overline{N}_1(t), \overline{N}_2(t), \ldots, \overline{N}_M(t)$ are independent of one another to write $\overline{Q}(t) = \sum_{m=1}^{M} y_m \overline{N}_m(t), t \ge 0.$ (11.3.6)

$$\begin{split} \varphi_{\overline{Q}(t)}(u) &= \mathbb{E} \exp \left\{ u \sum_{m=1}^{M} y_m \overline{N}_m(t) \right\} \\ \text{mgf} &= \mathbb{E} e^{uy_1 \overline{N}_1(t)} \mathbb{E} e^{uy_2 \overline{N}_2(t)} \cdots \mathbb{E} e^{uy_M \overline{N}_M(t)} \\ &= \varphi_{y_1 \overline{N}_1(t)}(u) \varphi_{y_2 \overline{N}_2(t)}(u) \cdots \varphi_{y_M \overline{N}_M(t)}(u) \\ &= \exp \{ \lambda p(y_1) t(e^{uy_1} - 1) \} \exp \{ \lambda p(y_2) t(e^{uy_2} - 1) \} \cdots \\ &\cdots \exp \{ \lambda p(y_M) t(e^{uy_M} - 1) \}, \end{split}$$

mgf 唯一性

• The random variable $\overline{Q}(t)$ of (11.3.6) has the **same distribution** as the random variable Q(t) appearing on the left-hand side of (11.3.5).

$$\varphi_{Q(t)}(u) = \exp\left\{\lambda t \left(\sum_{m=1}^{M} p(y_m)e^{uy_m} - 1\right)\right\}$$

$$= \exp\left\{\lambda t \sum_{m=1}^{M} p(y_m)(e^{uy_m} - 1)\right\}$$

$$= \exp\left\{\lambda t \sum_{m=1}^{M} p(y_m)(e^{uy_m} - 1)\right\}$$

$$= \exp\{\lambda p(y_1)t(e^{uy_1} - 1)\} \exp\{\lambda p(y_2)t(e^{uy_2} - 1)\} \cdots$$

$$\cdots \exp\{\lambda p(y_M)t(e^{uy_M} - 1)\}.$$

$$(11.3.5)$$

$$\varphi_{\overline{Q}(t)}(u) = \mathbb{E} \exp\left\{u \sum_{m=1}^{M} y_m + 1 \right\}$$

$$= \mathbb{E} e^{uy_1 \overline{N}_1(t)} \mathbb{E} e^{uy_2 \overline{N}_1(t)}$$

$$= \exp\{\lambda p(y_1)t(e^{uy_2} - 1)\} \cdots$$

$$\cdots \exp\{\lambda p(y_M)t(e^{uy_M} - 1)\}.$$

$$(11.3.5)$$

$$\varphi_{\overline{Q}(t)}(u) = \mathbb{E} \exp \left\{ u \sum_{m=1}^{M} y_m \overline{N}_m(t) \right\}$$

$$= \mathbb{E} e^{uy_1 \overline{N}_1(t)} \mathbb{E} e^{uy_2 \overline{N}_2(t)} \cdots \mathbb{E} e^{uy_M \overline{N}_M(t)}$$

$$= \varphi_{y_1 \overline{N}_1(t)}(u) \varphi_{y_2 \overline{N}_2(t)}(u) \cdots \varphi_{y_M \overline{N}_M(t)}(u)$$

$$= \exp \{ \lambda p(y_1) t(e^{uy_1} - 1) \} \exp \{ \lambda p(y_2) t(e^{uy_2} - 1) \} \cdots$$

$$\cdots \exp \{ \lambda p(y_M) t(e^{uy_M} - 1) \},$$

- The substance of Theorem 11.3.3 is that there are two equivalent ways of regarding a compound Poisson process that has only finitely many possible jump sizes.
- First, it can be thought of as a single Poisson process in which the size-one jumps are replaced by jumps of random size.

$$Q(t) = \sum_{i=1}^{N(t)} Y_i, \quad t \ge 0.$$
 (11.3.1)

• Alternatively, it can be regarded as a sum of independent Poisson processes in each of which the size-one jumps are replaced by jumps of a fixed size.

$$\overline{Q}(t) = \sum_{m=1}^{M} y_m \overline{N}_m(t), \quad t \ge 0.$$
 (11.3.6)

Corollary 11.3.4. Let y_1, \ldots, y_M be a finite set of nonzero numbers, and let $p(y_1), \ldots, p(y_M)$ be positive numbers that sum to 1. Let Y_1, Y_2, \ldots be a sequence of independent, identically distributed random variables with $\mathbb{P}\{Y_i = y_m\} = p(y_m), \ m = 1, \ldots, M$. Let N(t) be a Poisson process and define the compound Poisson process

$$Q(t) = \sum_{i=1}^{N(t)} Y_i.$$

For m = 1, ..., M, let $N_m(t)$ denote the number of jumps in Q of size y_m up to and including time t. Then

$$N(t) = \sum_{m=1}^{M} N_m(t) \text{ and } Q(t) = \sum_{m=1}^{M} y_m N_m(t).$$

The processes N_1, \ldots, N_M defined this way are independent Poisson processes, and each N_m has intensity $\lambda p(y_m)$.